在生成式AI、云计算等技术逐渐抹平大企业与中小企业之间的技术、成本差距后,各企业真正比拼的,只剩下人才、创意与执行力。
目前,随着AI技术的快速迭代,各种基于AIGC(人工智能内容生成)技术的产品不断涌向社会,而其中最普遍的,则莫过于大量的AI绘图模型,如Midjourney、Dreambooth、Novel AI和Stable Diffusion等。
同为开发绘画AI的团队,Midjourney是怎么取得今天的成就的呢?
1、延伸人类想象力
他为Midjourney设立了一个非常不“铜臭”的宗旨:AI 不是现实世界的复刻,而是人类想象力的延伸。
而这样充满科幻色彩的宗旨,和大卫的背景、经历有着很大的关系。
经过了广泛的探索后,大卫似乎找到了自己真正的兴趣所在,于是,在2010年便创立了一家研发手部跟踪技术为主的公司——Leap Motion。
然而,由于与之相关的VR/AR技术一直不成熟,Leap Motion也始终没能做出有具体应用场景的产品。
恰巧在这时,AI在生成艺术方面取得了突破。
Transformer架构的出现,彻底改写了图像合成的历史。从此,多模态深度学习整合了NLP和计算机视觉的技术,成为图像合成的艺术方法。
于是,借着生成式AI的东风,大卫创建了Midjourney。
公司团队成员仅11人,其中1位创始人、8位研发人员、1位法务、1位财务。
而作为中坚力量的研发成员,一半(4位)都是尚未毕业的本科生。
虽然这四位本科生都有一些实操甚至是创业经历,但是确实经验有限,而且也非毕业顶尖名校。
剩下来的几位研发人员,都有着比较丰富的职业经历。
在聚拢人才后,大卫也进一步明确了自己对于Midjourney的理念。懂得如何与水一起生活和工作的人类,将有能力在水中游泳、做船、筑坝发电,从而更好的生活,因此,大卫认为AI是人类想象力的引擎。
然而,在当时生成式AI的竞争格局上,有这类“雄心壮志”的团队,可不只Midjourney一家。
例如Stable Diffusion的母公司 Stability.AI,在创立时也声称要将自己的使命定格为成为世界领先的开源AI公司,并发扬将AI共享于全世界的理念。
然而,口号喊得震天响,理念终归是不能当饭吃的啊。
情怀满满的大卫,之后是怎么解决一系列公司融资、盈利的问题的呢?
2、开源VS闭源
不过,这样的模式要想行得通,得解决两大关键问题:
原因就在于,当时像Stable Diffusion这样的行业龙头,为了吸引大量的开发者,最大程度的把模型用起来,因此采取了开源的模式。
和Dall·E、Midjourney不同,Stable Diffusion是完全免费、不限次数、任何人都可用的。
虽然对硬件有着一定要求,但也能在几秒钟内生成高清图像。
这样的好处在于,开源社区会齐心协力地完善模型文档,共同解决技术难题。这使得代码的迭代速度非常快,优化效率远远高于闭源系统。
但缺点也很显而易见,那就是商业化不够直接,可能为别人“做了嫁衣”。
而相较之下,Midjourney却采用了不那么开放的“闭源系统”。
如果说闭源系统真的有什么好处,那就是针对性更强了。
因为模型闭源,并通过庞大的用户量积累了独有的数据集,可以根据用户需求不断地针对性训练模型,长期来看更有利于建立竞争壁垒。
在探索用户需求这点上,大卫采取了产品上线后边测试边改进的办法。
例如Midjourney模型最开始很慢,需要20分钟才能出一张高质量的图片。后来团队推出了一个做15秒生产图片,但是质量没那么高的版本,
除了了解用户需求外,在使用流程方面,Midjourney也并不像Stable Diffusion需要本地部署,操作十分便捷,对显卡和硬件性能也几乎没有要求。
虽为闭源,但Midjourney在使用难易度上,却更像一个“亲民”的大众产品。
3、算力难题
但如此庞大的云计算量,必然需要高昂的成本,这就回到了刚才的第二个问题:
在没有融资的情况下,在云上进行大模型训练所需要的高昂,该成本怎么解决?
实际上,大卫解决这个问题的方式很简单,也很不可思议。
当大卫需要找到一个云供应商提供10,000个GPU时,他直接给云供应商的负责人发了封电子邮件,结果对方就直接给到了这些资源,完全不需要风险投资。
看到这儿,也许有人惊得下巴都掉了,这种事在现实中真的可能吗?
当然,供应商并不是抽风了,而是看中了大卫之前的成就和声誉。
大卫之前的创业已经获得了声誉,大卫打从创办Leap Motion的时候起就有一个观点,他觉得技术的最大限制不是规模、成本或速度,而是人们如何与之互动。
Leap Motion的手势互动是一个尝试,到了Midjourney这里,他开始使用更短的绘画关键词(prompt)来催动AI产出。
这样的理念,吸引了每一个了解大卫的人,也让他得到了云供应商的支持。
然而,在获得了供应商的鼎力支持后,大卫也仍然要面对算力捉襟见肘的问题。
从成本来说,Midjourney大约10%的云成本用于训练,90%是用户制作图像的推理。所以几乎所有的成本都在制作图像上。
为解决这一点,Midjourney在世界上八个不同的地区,设立了自己的服务器,比如韩国、日本或荷兰等,在每个时区的夜间,当地人都在睡觉,没有人使用GPU。Midjourney就可以充分利用这些算力,实现GPU负载平衡。
实际上,这种依靠云端服务器来降低成本、加快模型训练的做法,与目前腾讯训练大模型的策略十分相似。
因此,Midjourney “云上计算”的这一步棋,着实是摸准了时代的方向。
互联网的演进之路,已经说明,无论To B还是To C行业,都在追求越来越集约精简的终端硬件、越来越低门槛的交互入口、越来越轻盈的软件应用。
4、总结
因为在生成式AI、云计算等技术逐渐抹平大企业与中小企业之间的技术、成本差距后,各企业真正比拼的,只剩下人才、创意与执行力。
而这也是为什么, Midjourney这类仅有寥寥十几人的小团队能脱颖而出的原因。因为这样依靠少数尖端人才组建的团队,具有大企业所没有的灵活性、创见和魄力。
而这类小团队的创意、灵感,若要真正在市场、社会中扎下根,就离不开对用户多样化、个性化需求的追踪。
这是因为,AIGC技术的“泛用性”,决定了其绝不是针对某一行业、人群,或是某一类企业的技术。
只有在这多样化的需求中,尽可能地满足不同层级用户的特定需求,一款产品才能真正地具有长远的生命。
既服务所有人,又不忽视每一个特殊的人,这或许就是Midjourney成功的最大原因。
资料来源:https://mp.weixin.qq.com/s/Eo4WS_z2yenPJ-rA7B1PUw
转载请注明:Midjourney:伟大的公司只需要十一人 | GO123.AI网址大全 | ChatGPT | Midjourney | Stable Diffusion | AI工具软件 | AI软件免费教程